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Haim Y, Tarnovscki T, Bashari D, Rudich A. A chromatin
immunoprecipitation (ChIP) protocol for use in whole human adipose
tissue. Am J Physiol Endocrinol Metab 305: E1172–E1177, 2013. First
published September 3, 2013; doi:10.1152/ajpendo.00598.2012.—Chro-
matin immunoprecipitation (ChIP) has become a central method when
studying in vivo protein-DNA interactions, with the major challenge
being the hope to capture “authentic” interactions. While ChIP pro-
tocols have been optimized for use with specific cell types and tissues
including adipose tissue-derived cells, a working ChIP protocol ad-
dressing the challenges imposed by fresh whole human adipose tissue
has not been described. Utilizing human paired omental and subcu-
taneous adipose tissue obtained during elective abdominal surgeries,
we have carefully identified and optimized individual steps in the
ChIP protocol employed directly on fresh tissue fragments. We
describe a complete working protocol for using ChIP on whole
adipose tissue fragments. Specific steps required adaptation of the
ChIP protocol to human whole adipose tissue. In particular, a cross-
linking step was performed directly on fresh small tissue fragments.
Nuclei were isolated before releasing chromatin, allowing better
management of fat content; a sonication protocol to obtain fragmented
chromatin was optimized. We also demonstrate the high sensitivity of
immunoprecipitated chromatin from adipose tissue to freezing. In con-
clusion, we describe the development of a ChIP protocol optimized for
use in studying whole human adipose tissue, providing solutions for the
unique challenges imposed by this tissue. Unraveling protein-DNA in-
teraction in whole human adipose tissue will likely contribute to eluci-
dating molecular pathways contributing to common human diseases such
as obesity and type 2 diabetes.

transcriptional regulation; ChIP; whole human adipose tissue; end-
point PCR; protein-DNA interaction

CHROMATIN IMMUNOPRECIPITATION (ChIP) is a powerful and
widely used tool for investigating DNA-protein interactions in
vivo. This technique was developed in the mid 1990s and is
based on the ability of formaldehyde to reversely cross-link
proteins and DNA molecules that are within a maximal dis-
tance of 2Å. Such a distance is thought to capture mostly direct
interactions and thus is suitable for exploring proteins that
directly bind DNA (11). Breakage of genomic chromatin into
appropriate size fragments (of 200–1,000 bp) is the next step.
DNA-protein complexes are then immunoprecipitated using
primary antibodies directed against the protein of interest.
Subsequently, immunoprecipitated complexes are washed un-
der stringent conditions to remove nonspecifically bound chro-
matin, the cross-link is then reversed, proteins are digested, and
the precipitated ChIP-enriched DNA is purified. This purified

DNA can be used in endpoint PCR, real-time PCR, labeling
and hybridization to genomewide or tiling DNA microarrays
(ChIP-on-chip), molecular cloning and sequencing, or direct
high-throughput sequencing (ChIP-seq)(8, 14, 15, 25).

Originally, ChIP protocols were complicated, time-consum-
ing, and required large amounts of fresh starting material, and
each step had no alternatives. With time, improvements and
modifications were introduced, enabling not only a reduction in
the time required to perform the assay, but also the use of lower
amounts of a starting material (4, 17, 18). Furthermore, for
almost every step in the current standard protocol optional
alternatives exist. Breakage of genomic chromatin, for exam-
ple, can be done using either a mechanical method (sonicator)
or by enzymatic digestion (with micrococcal nuclease). Addi-
tionally, magnetic beads are now commercially available for
the precipitation of DNA-protein-antibody complexes as an
alternative to the traditional agarose beads. Other examples
include use of Chelex 100 (21) to reverse cross-linking instead
of a highly concentrated salt or different DNA purification
methods such as the “old school” phenol-chloroform method or
spin-column technology with the selective binding properties
of a uniquely designed silica membrane (commercially avail-
able).

An additional major development has been the optimization
of ChIP protocols for specific cell types or tissues, such as the
liver (1), primary pancreatic �-cells (10), monolayer cell lines
(16), primary hippocampal cells, and whole hippocampus (24).
Among these cell/tissue-specific ChIP protocols, one can also
find protocols for primary isolated preadipocytes (16, 20) or
adipocyte-like cell lines (16). Yet, a working ChIP protocol for
whole adipose tissue (AT) has not been described.

AT is increasingly considered a major endocrine organ that
contributes to whole body metabolic homeostasis. AT dysfunc-
tion is observed in obesity and diabetes mellitus (6, 7, 23), two
health problems that are reaching epidemic proportions. To
better understand the molecular mechanisms underling AT
dysfunction, there is a need to explore AT regulation also at the
transcriptional dimension, in which ChIP is currently a leading
technique. Many ChIP analyses were used to investigate tran-
scriptional regulation of either adipogenesis or adipocyte func-
tion; however, none of them was conducted in human whole
AT. Several problems make it uniquely difficult to work with
AT using a standard ChIP protocol. First, uniquely, small
pieces of AT do not precipitate but rather float and make an
upper dense phase (due to their fat content), complicating
wash-aspirate-resuspend steps. Moreover, the standard ChIP
protocol requires resuspending cells/tissues in SDS lysis buffer
followed by sonication. Adipose fat content may reduce the
sonication efficiency, resulting in DNA fragments unsuitable
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for the immunoprecipitation step. Therefore, a working proto-
col for ChIP using human AT is highly desired. Here, we
describe a modified standard ChIP protocol adjusted for work
with human AT fragments.

MATERIALS AND METHODS

Materials. Formaldehyde solution 37% (vol/vol) and protease in-
hibitors (PI) were purchased from Sigma-Aldrich (St. Louis, MO).
Phosphate-buffered saline (PBS) was purchased from Biological In-
dustries (Beit-Haeemek, Israel). Salmon sperm DNA/protein A-aga-
rose beads and Magna ChIP protein A magnetic beads were purchased
from Merck-Millipore (Billerica, MA). Antibodies were as follows:
anti-E2F1 (sc-191x; ChIP-grade), anti-PPAR� (sc-7273x; ChIP-
grade) anti-RNA pol-II (sc-21750x; ChIP-grade), and anti-ICAM-1
(sc-7891), obtained from Santa Cruz Biotechnology (Santa Cruz, CA),
Chelex was purchased from Bio-Rad Laboratories (Hercules, CA).
Proteinase K solution was obtained from Invitrogen-Life Technolo-
gies (Grand Island, NY). Phusion High Fidelity master mix with HF
buffer was purchased from Finnzymes Thermo Scientific (Vantaa,
Finland).

Tissue preparation. Fresh paired human AT biopsies [subcutaneous
and omental (visceral) fat] were obtained from female patients who
underwent elective cholecystectomy or bariatric surgeries as part of a
setup established at Soroka Medical Center and Ben-Gurion Univer-
sity of the Negev, Beer-Sheva, Israel (2, 3, 9, 13). All patients signed
a written informed consent form approved in advance by the Institu-
tional Ethics Committee for conducting studies in humans. Immedi-
ately after tissue excision, samples were transferred on ice (in sterile
polyethylene cups) to the laboratory. One gram of each tissue was
taken for further analysis. Each sample was rinsed once with sterile
1� PBS supplemented with PI (1:1,000 dilution) in a 50-ml conical
tube. Afterward, each sample was resuspended in 10 ml of sterile 1�
PBS supplemented with PI and minced into small pieces (1–3 mm3)
using two pairs of sterile surgical scissors. Formaldehyde was added
to a final concentration of 1%, and samples were incubated for 10 min
at 37°C with moderate shaking (85 rpm).

Cross-linking reaction was quenched (without aspirating the form-
aldehyde) by adding glycine to a final concentration of 125 mM for
additional incubation (8 min, 37°C, moderate shaking). After incuba-
tion, samples were centrifuged [5 min, 2,500 rpm, room temperature
(RT)] and placed on ice until the end of the procedure. Three distinct
phases could be readily visualized at this point: tissue aggregates of
higher density (pellet, tissue debris), buffer containing the PBS,
formaldehyde and glycine (intermediate liquid phase), and lipid-rich
(low-density) tissue pieces and fat (upper layer). By use of a sterile
Pasteur pipette the pellet and intermediate liquid phase were aspirated,
and the upper phase was washed twice with ice-cold 1� PBS
supplemented with PI followed by centrifugation (5 min, 2,500 rpm,
4°C). After removal of the liquid phase from the second wash, small
AT pieces were resuspended in 3 ml of adipocyte lysis buffer (500
mM PIPES, 80 mM KCl, and 1% Igepal) supplemented with PI,
homogenized using a Dounce homogenizer (20 strokes; Wheaton,
Millville, NJ). Sample incubation on ice for 15 min (vortexed every 3
min) was required to ensure rupture of the cell membranes and release
of the nuclei. Twenty additional strokes were carried out followed by
larger particle removal using 250-�m mesh. Then, samples were
centrifuged (5 min, 2,500 rpm, 4°C), the pellet of the nuclei was
resuspended in 500 �l of SDS lysis buffer supplemented with PI (1%
SDS, 10 mM EDTA, pH 8.1, and 50 mM Tris·HCl, pH 8.1), trans-
ferred to a sterile 1.5-ml Eppendorf tube and incubated on ice for 20
min prior to sonication.

Sonication, dilution, and preclearing of the fixed chromatin. To
ensure that sonication would result in 200- to 1,000-bp DNA frag-
ments (PCR/qPCR applications) or 200- to 300-bp fragments (se-
quencing application), a 2-mm probe of VibraCell VCX-130 sonicator
(Sonics, Newtown, CT) or Bioruptor Sonication System UCD-300

(Diagenode, Denville, NJ) was used, respectively, as follows. For
generation of 200- to 1,000-bp DNA fragments, a probe sonicator was
set on 15 pulses, each pulse 15 s “ON” and 30 s “OFF” at 40% of the
sonicator’s amplitude (see Fig. 2A). To generate the smaller (200- to
300-bp fragments), we obtained optimal results with a Bioruptor
UCD-300 set at 20 pulses, each pulse 20 s “ON” and 30 s “OFF”,
using the “low density mode” of the sonicator (see Fig. 2B). Samples
were maintained on ice during sonication to minimize foaming and
avoid overheating. After sonication, samples were cenrifuged (10 min,
14,000 rpm, RT). Fifty microliters of sonicated chromatin (undiluted)
were taken aside to evaluate sonication efficiency by running samples
on a 1% agarose gel and validating the size of the chromatin frag-
ments (200–1,000 or 200–300 bp).

Two hundred microliters of supernatant (sonicated chromatin) was
taken per one immunoprecipitation and diluted 10-fold in ChIP
dilution buffer (0.01% SDS, 1.1% Triton X-100, 1 mM EDTA, pH
8.1, 16.7 mM Tris·HCl, pH 8.1, and 167 mM NaCl) supplemented
with PI in a sterile 2-ml tube. It is possible to generate another 2-ml
tube with sonicated and diluted chromatin and snap-freeze it in liquid
nitrogen for another ChIP assay; however, as presented later, we did
not succeed in reproducing our results in frozen samples. To enable
comparison of results between different samples, the input of each
sample, i.e., the amount of starting chromatin prior to immunopre-
cipitation, needs to be assessed and later to be used for normalization
of the immunoprecipitation results. For this, 100 �l of previously
diluted and sonicated chromatin was transferred to a new sterile
1.5-ml tube and frozen until DNA purification.

Immunoprecipitation. There are two commercially available types
of beads that one can choose from: magnetic or agarose.

When agarose beads were chosen, ChIP protocols required a
preclearing step. For this, 60 �l of DNA/protein A-agarose 50% beads
was added to each sample for 60 min at 4°C with agitation. Then
agarose beads were precipitated by centrifugation (5 min, 1,200 rpm,
4°C), and supernatant was transferred to a new 2-ml tube. Following this
step, two �g of primary ChIP-grade antibody (anti-E2F1 or -PPAR�
used here, or anti-RNA pol II for positive control and anti-ICAM-1
Ab for the negative control) were added to the precleared chromatin,
and samples were incubated overnight at 4°C with constant rotation.
Then, 70 �l of DNA/protein A-agarose 50% beads was added to each
sample (in case of agarose beads) followed by 90-min incubation at
4°C with rotation. Agarose beads were then precipitated by centrifu-
gation (5 min, 1,200 rpm, 4°C) followed by careful removal of the
supernatant.

When magnetic beads were used, chromatin was directly (without
a preclear step) incubated overnight at 4°C with constant rotation after
addition of the same amounts of primary ChIP-grade antibodies as
described above and 40 �l of Magna ChIP protein A magnetic beads.
Thereafter, protein A magnetic beads were captured with magnetic
separator, and supernatant was completely removed.

Washing and DNA recovery. Protein A-agarose beads/antibody/
chromatin or protein A magnetic beads/antibody/chromatin com-
plexes were washed for 5 min with rotation at 4°C and then precip-
itated (5 min, 1,200 rpm, 4°C in case of agarose beads or magnetic
separator in case of magnetic beads), and each wash buffer was
discarded between steps. The first wash was with 1 ml of low-salt
immune complex wash buffer (0.1% SDS, 1% Triton X-100, 2 mM
EDTA, pH 8.1, 20 mM Tris·HCl, pH 8.1, and 150 mM NaCl). The
second wash was with 1 ml of high-salt immune complex wash buffer
(0.1% SDS, 1% Triton X-100, 2 mM EDTA, pH 8.1, 20 mM
Tris·HCl, pH 8.1, and 500 mM NaCl) followed by a third wash with
1 ml of LiCl immune complex wash buffer (250 mM LiCl, 1%
deoxycholic acid, 1 mM EDTA, pH 8.1, 10 mM Tris·HCl, pH 8.1, and
1% Igepal). The last two washes were with a TE buffer (1 mM EDTA,
pH 8.1, and 10 mM Tris·HCl, pH 8.1) at RT.

In case of agarose beads, after removal of the last wash, 100 �l of
10% (wt/vol) Chelex 100 was added to each sample and input (inputs
were thawed on ice), followed by vortex and incubation for 13 min at
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95°C. Samples and inputs were then cooled on ice, followed by
addition of 2 �l of 20 �g/ml proteinase K and vortex and incubation
for 45 min at 55°C. Additional incubation for 10 min at 95°C was
performed to inactivate the proteinase K. Samples and inputs were
then centrifuged for 5 min at 14,000 rpm at RT, and supernatant
(containing purified DNA suitable for further analysis) was trans-
ferred to a new sterile 1.5-ml Eppendorf tube, avoiding carry-over of
Chelex beads. One hundred microliters of PCR-suitable water was
then added to the Chelex beads, followed by vortex and centrifugation
for 5 min at 14,000 rpm at RT. Supernatant was transferred to the
same 1.5-ml tube.

Note that the required boiling step when using Chelex yields
single-stranded DNA. As an alternative, particularly if double-
stranded DNA is desired, the DNA can be eluted from the DNA/
protein A-agarose 50% beads by adding to the samples after the final

wash 250 �l of a fresh elution buffer (SDS 0.1% and NaHCO3 100
mM) and incubation for 15 min at RT with rotation. Centrifugation for
5 min at 1,200 rpm was needed to precipitate the agarose beads,
followed by a transfer of the supernatant to a new sterile 1.5-ml tube.
The elution step was then repeated, and eluates were combined (total
volume �500 �l). Cross-linking was reversed by adding 20 �l of 5 M
NaCl to the combined eluates and incubation for 4 h at 65°C. For
protein digestion, 2 �l of 20 �g/ml proteinase K, 10 �l of 500 mM
EDTA, and 20 �l of 1 M Tris·HCl were added, and eluates were
incubated for 1 h at 55°C. DNA recovery can be performed using the
phenol-chloroform method or commercially available kits.

In case of magnetic beads, after removal of the last wash, 250 �l of
fresh elution buffer (SDS 0.1% and NaHCO3 100 mM, 20 mM
Tris·HCl, 5 mM EDTA, 50 mM NaCl) containing 2 �l of 20 �g/ml
proteinase K was added to the samples. Samples were incubated for
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Fig. 1. Detailed flowchart of a modified ChIP
protocol optimized for application for human ad-
ipose tissue. Please refer to text for changes in this
protocol (from step 15 and on) when using mag-
netic beads instead of agarose beads for the pro-
tein-DNA complex precipitation.
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2 h at 65°C on a Thermomixer (Eppendorf, Hamburg, Germany) with
constant vortexing (1,300 rpm). After capture of the beads using a
magnetic separator, the supernatant was recovered, and ChIP material
was reincubated in 250 �l of elution buffer-proteinase K for 15 min
on the Thermomixer. Both supernatants were pooled. As before, DNA
recovery can be performed using the phenol-chloroform method or
commercially available kits.

The recovered DNA yield was �200 ng per 1 gram of starting
tissue material. Then, this recovered DNA was subjected to semiquan-
titative PCR (5 �l and 0.5 �l from samples and inputs, respectively)
using specific primers and Phusion High Fidelity master mix with HF
buffer. Alternatively, quantitative real-time PCR was successfully
performed (not shown).

RESULTS AND DISCUSSION

We hereby report the optimization of standard ChIP proto-
cols for application to study protein-DNA interaction in human
whole AT. Unique modifications of the protocol to adopt for
AT are highlighted in Fig. 1, and elaborated below.

Mincing the tissue into small pieces (1–3 mm3) using sur-
gical scissors and performing the cross-linking step directly on
those tissue fragments (explants) is a modification that enables
work with whole AT. While AT includes many cell types,
suggesting that changes in ChIP may represent also alterations
in the cellular composition of the tissue, the advantages over
ChIP studies on isolated adipocytes include the higher chance
of capturing “authentic” in vivo protein-DNA interactions in
the tissue, avoiding the potential effects of the isolation pro-
cedure. Indeed, classical adipocyte isolation procedures with
collagenase were criticized for causing substantial loss of
adipocytes and/or altering the expression of multiple genes,
including inflammatory and adipocyte-specific genes (19, 22).
While some of these shortcomings have been improved, the
theoretical risk of changing protein-DNA interaction by in
vitro manipulations is still significant.

Isolation of nuclei prior to chromatin release enabled us to
remove the fat, which might affect sonication efficiency and/or
protein-antibody interactions.

To validate this modified ChIP protocol, we performed two
important controls. For positive control, we precipitated RNA
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Fig. 2. ChIP in human adipose tissue. Chromatin shearing of human adipose
tissue. Cross-linked chromatin was sonicated to fragments of 200–1,000 bp (A)
or 200–300 bp (B), using different sonication systems, as described in
MATERIALS AND METHODS. Samples were then electrophoresed on 1% agarose
gel. M denotes a 250- or 100-bp ladder; S1/2/3/4 denote the different sonicated
samples. C: formaldehyde cross-linked chromatin from human omental adi-
pose tissue (from 2 patients) was subjected to ChIP experiment. Immunopre-
cipitation of PPAR� containing complexes was performed using anti-PPAR�
antibody. Anti-RNA Poll 2 was used as positive control (PC) and anti-ICAM-1
was used as negative control (NC). sc, subcutaneous; om, omental. After
isolation of bound DNA, endpoint PCR was performed for a 450-bp region of
the endogenous human LPL promoter. Inputs indicate PCR performed on DNA
(diluted 1:300) without any immunoprecipitation. D: ChIP was performed on
human adipose tissue by using two different ChIP-grade anti-E2F1 antibodies
(one from Abcam and the other from Santa Cruz). PC and NC were as
described in C. After isolation of bound DNA, PCR was performed for a
297-bp region of the endogenous human ASK1 promoter. E: ChIP of human
adipose tissue was performed using anti-E2F1 (Santa Cruz) followed by
comparison of agarose A beads (ag) to magnetic beads (mg) for the protein-
DNA complex precipitation step. F: E2F1 ChIP was performed comparing two
DNA purification methods: phenol-chloroform extraction (P-Cl) or Chelex.
G: effect of freezing sonicated chromatin from human adipose tissue on results
of E2F1 ChIP.
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pol-II because of its robust interactions with the chromatin,
while ICAM-1 was chosen as a negative control given the
exclusive plasma membrane localization of this integrin (non-
immune isotype control antibody is an equally valuable alter-
native). As shown in Fig. 2, C and D, precipitation with
anti-RNA pol-II resulted in a PCR signal, while precipitation
with anti-ICAM-1 revealed no signal, as expected. Performing
these two controls in each immunoprecipitation experiment
provides the required reassurance for the reliability of the
entire assay.

To ensure that despite adipose tissue heterogeneity (adi-
pocytes, immune cells, preadipocytes, endothelial cells, etc.)
adipocyte fraction is represented in ChIP results, we conducted
PPAR� ChIP given the known role of this transcription factor
in adipogenesis and adipocytes. In vivo binding of PPAR� to
the lipoprotein lipase (LPL) promoter, a well-established
PPAR� target gene in humans, was clearly detected (Fig. 2C).

Several steps are particularly crucial for the success of this
ChIP protocol. Optimizing the chromatin breakage using son-
ication is particularly crucial while working with limited
amounts of human AT. Confirming sonication efficiency can
be achieved as shown in Fig. 2, A and B. DNA fragment sizes
should be defined depending on the desired final application.
Here, we show optimized sonication using two different son-
ication systems and resulting in different DNA fragment sizes.
The optimized protocol presented is the result of testing dif-
ferent numbers of pulses, pulse amplitudes, and durations of
each pulse.

Choosing the right antibody (preferably “ChIP grade”) is
another critical step to ensure a successful ChIP assay. We
tested four different ChIP-grade E2F1 antibodies, but only two
produced any ChIP product (Fig. 2D). Clearly, a higher PCR
product was noted with one of these antibodies, but overall the
results obtained with the two were comparable (data not
shown).

This protocol tested two types of commercially available
beads for immunoprecipitation. As shown in Fig. 2E, it may be
suggested that magnetic beads might increase the sensitivity of
the assay, as we tended to see a stronger signal particularly in
samples that resulted in low PCR product (or real-time PCR
product, not shown) following ChIP.

There are three common methods for DNA purification. We
tested phenol-chloroform extraction vs. Chelex (Fig. 2F). The
Chelex-dependent method resulted in higher DNA yield, but,
as mentioned earlier, this recovered DNA is single stranded
and is thus suitable for PCR and qPCR but not necessarily for
sequencing. To conduct sequencing application, phenol-chlo-
roform extraction or DNA purification spin columns, both of
which isolate double-stranded DNA, should be preferred. In
our experience, phenol-chloroform resulted in a superior result
to the spin columns (data not shown).

Choosing the right primers for the correct DNA promoter
areas is another cricital step. We used known primers (5, 12)
for the promoter area of interest, but designing new primers is
also available using different software tools [Primer3 Input
(frodo.wi.mit.edu/), Primer designing tool (www.ncbi.nlm.nih.
gov/tools/primer-blast/), Primer3Plus (www.bioinformatics.nl/
cgi-bin/primer3plus/primer3plus.cgi)] or others. It is important
to note that, in addition to E2F1 binding to the ASK1 promoter,
we could readily detect binding to a different, “classical” E2F1
target gene, cyclin d1 (not shown). Along with the PPAR�

ChIP (Fig. 2C), we believe the described ChIP protocol is not
dependent on a specific primer.

Freezing samples postsonication (steps 14c, 15c) for future
immunoprecipitations is widely used in ChIP procedures; how-
ever, we had a poor experience following this option: no PCR
signal was generated from chromatin that was frozen for 2 wk
in �80°C (Fig. 2G). Reducing or even harming in vivo
interactions between E2F1 and chromatin during freezing
might explain the differences between our and others’ results.
Alternatively, this may represent AT-specific sensitivity to
freeze-thaw. Given this experience, we currently cannot rec-
ommend freezing sonicated chromatin, although other tran-
scription factors or possibly using larger amounts of starting
AT material may not be as sensitive.

In conclusion, we optimized the standard ChIP protocol for
human whole AT. The most important advantage of this
protocol is the ability to study transcriptional regulation in
“authentic” human tissues and not in models such as adipocyte
cell lines or nonhuman ATs. Theoretically, we believe this
protocol can be used not only to investigate known promoter
areas (using endpoint PCR or real-time PCR), but also to
discover novel promoters regulated by a specific transcription
factor of interest utilizing ChIP-seq.
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