The Ultrasonic Processor supplied with this instruction manual is constructed of the finest material and the workmanship meets the highest standards. It has been thoroughly tested and inspected before leaving the factory and when used in accordance with the procedures outlined in this manual, will provide you with many years of safe and dependable service.

Rev 04 6/28/02
WARRANTY

Your Ultrasonic Processor is warranted and backed by the manufacturer for a period of three years from the date of shipment against defects in material and workmanship under normal use as described in this instruction manual. During the warranty period, the manufacturer will, at its option, as the exclusive remedy, either repair or replace without charge for material and labor, the part(s) which prove to be defective, provided the unit is returned to us properly packed with all transportation charges prepaid.

Ultrasonic probes are guaranteed against defects for a period of one year from date of shipment. A defective probe will be replaced once without charge, if failure occurs within the warranty period. Wear resulting from cavitation erosion is a normal consequence of ultrasonic processing, and is not covered by this warranty.

This warranty is in lieu of any other warranties, either express, implied, or statutory. The manufacturer neither assumes nor authorizes any person to assume for it any other obligations or liability in connection with the sale of its products. The manufacturer hereby disclaims any warranty of either merchantability or fitness for a particular purpose. No person or company is authorized to change, modify, or amend the terms of this warranty in any manner or fashion whatsoever. Under no circumstances shall the manufacturer be liable to the purchaser or any other person for any incidental or consequential damages or loss of goodwill, production, or profit resulting from any malfunction or failure of its product.

This warranty does not apply to equipment that has been subject to unauthorized repair, misuse, abuse, negligence or accident. Equipment which shows evidence of having been used in violation of operating instructions, or which has had the serial number altered or removed, will be ineligible for service under this warranty.

All probes are manufactured to exacting specifications and are tuned to vibrate at a specific frequency. Using an out-of-tune probe will cause damage to the equipment and may result in warranty nullification. The manufacturer assumes no responsibility for probes fabricated by another party or for consequential damages resulting from their usage.

The aforementioned provisions do not extend the original warranty period of any product that has either been repaired or replaced by the manufacturer.
Your Ultrasonic Processor has been designed with safety in mind. However, no design can completely protect against improper usage, which may result in bodily injury and/or property damage. For your protection and equipment safeguard, observe the following warnings at all times, read the operating instructions carefully before operating the equipment, and retain this instruction manual for future reference. If the ultrasonic Processor is used in a manner contrary to that specified in this instruction manual, the protection features designed into the unit may be impaired.

- Make sure the Ultrasonic Processor is properly grounded via a 3-prong outlet.
- High voltage is present in the power supply. Do not remove the cover. Refer all servicing to qualified service personnel.
- To avoid electric shock, disconnect the electrical power cord before removing the cover prior to servicing.
- Never operate the power supply unless it is connected to the converter.
- When working with a ¾” (19mm) probe or extender, never allow the AMPLITUDE to be set above 70. Ignoring this caution will cause the probe or extender to fracture.
- Never operate a probe with threaded end without a tip, or extender.
- Air-cool the converter when sample temperature exceeds 100° C, and when working at high intensity for more than 30 minutes.
- It is recommended that a sound abating enclosure or ear protection be used when operating the Ultrasonic Processor.

WARNING or CAUTION

Where you see this alert symbol and WARNING or CAUTION heading, strictly follow the warning instructions to avoid personal injury or equipment failure.
CAUTION
LOW SURFACE TENSION LIQUIDS – ORGANIC SOLVENTS

The probes (solid or with a replaceable tip) are tuned elements that resonate at a specific frequency. If the replaceable tip is removed or isolated from the rest of the probe, the element will no longer resonate at that frequency and the power supply will fail. Unlike aqueous (water based) solutions which rarely cause problems, solvents and low surface tension liquids are problematic. These liquids penetrate the probe/replaceable tip interface, and force the particulates into the threaded section isolating the tip from the probe.

When processing low surface tension liquids with an older model High Volume Flow Cell equipped with a ¾” (19mm) or 1” (25mm) probe, ALWAYS use a solid probe.

SECTION 1 – INSTALLATION

INSPECTION

Prior to installing the Ultrasonic Processor, perform a visual inspection to detect any evidence of damage, which might have occurred during shipment. Before disposing of any packaging material, check it carefully for small items.

The Ultrasonic Processor was carefully packed and thoroughly inspected before leaving our factory. The carrier, upon acceptance of the shipment, assumed responsibility for its safe delivery. Claims for loss or damage sustained in transit must be submitted to the carrier.

If damage has occurred, contact your carrier within 48 hours of the delivery date. DO NOT OPERATE DAMAGED EQUIPMENT. Retain all packing materials for future shipment.
ELECTRICAL REQUIREMENTS

The Ultrasonic Processor requires a fused, single phase 3-terminal grounding type electrical outlet capable of supplying 50/60 Hz at 220 volts, or 240 volts.

WARNING
For your personal safety, do not, under any circumstances, defeat the grounding feature of the power cord by removing the grounding prong.

INSTALLING THE ULTRASONIC PROCESSOR

The Ultrasonic Processor should be installed in an area that is free from excessive dust, dirt, explosive and corrosive fumes, and extremes of temperature and humidity.
SECTION II – OPERATION

PRINCIPLES OF ULTRASONIC DISRUPTION

The ultrasonic power supply converts 50/60 Hz line voltage to high frequency electrical energy. This high frequency electrical energy is transmitted to the piezoelectric transducer within the converter, where it is changed to mechanical vibrations. The vibrations from the converter are intensified by the probe, creating pressure waves in the liquid. This action forms millions of microscopic bubbles (cavities) which expand during the negative pressure excursion, and implode violently during the positive excursion. This phenomenon, referred to as cavitation, creates millions of shock waves in the liquid, as well as elevated pressures and temperatures at the implosion sites. Although the cavitation collapse last but a few microseconds, and the amount of energy released by each individual bubble is minute, the cumulative effect causes extremely high levels of energy to be released into the liquid.
<table>
<thead>
<tr>
<th>FUNCTIONS OF CONTROLS, INDICATIONS AND CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER switch</td>
</tr>
<tr>
<td>TEST switch</td>
</tr>
<tr>
<td>RESET switch</td>
</tr>
<tr>
<td>TIMER</td>
</tr>
<tr>
<td>AMPLITUDE control</td>
</tr>
<tr>
<td>Power monitor</td>
</tr>
<tr>
<td>Converter cable</td>
</tr>
<tr>
<td>Fuse</td>
</tr>
<tr>
<td>Power cord</td>
</tr>
</tbody>
</table>
PREPARATION FOR USE

NOTE
The High Volume Flow Cell is recommended only for the treatment of low viscosity samples, which do not require extended exposure to ultrasonics. Because the residence time within the cell is relatively short, it might be necessary to recirculate the sample.

CAUTION
Do not operate an Ultrasonic Processor that has been transferred from a very cold environment to a hot environment, or vice versa. Wait until it has reached room temperature

1. Ensure that the AMPLITUDE dial is set fully counter-clockwise.
2. Using the spanner wrenches provided, secure the converter to the High Volume Flow Cell.
3. Connect the converter cable to the power supply.

CAUTION
Never place a washer between the probe and the converter. Never apply grease to the mating surfaces or threads of the converter or probe.

4. Ensure that the POWER switch is set to OFF.
5. Plug the electrical line cord into the electrical outlet.
7. Set the AMPLITUDE to 50.
8. Depress the **POWER** switch all the way to energize the unit. The switch will illuminate.

9. Depress the **TEST** switch and check the power monitor. The power reading should be less than 20%.

CAUTION
Your Ultrasonic Processor features automatic tuning and does not require any manual adjustments. **DO NOT ATTEMPT TO TUNE MANUALLY.** Ignoring this caution will cause the power supply to fail.

NOTE
Since the amplitude required is application dependent and subject to the volume and composition of the sample, it is recommended that the amplitude be first set at mid-range, then empirically determined and optimized while the sample is being processed.

NOTE
The probe within the High Volume Flow Cell is tuned to vibrate at a specific frequency. If the resonant frequency of the probe has changed, due to cavitation erosion or fracturing, a minimum reading will not be obtained. If an overload condition exists, or if minimum reading cannot be obtained (less than 20%) disconnect the converter and repeat the above procedure to determine which component might be defective. If minimum reading is obtained using the converter without the probe, the probe is defective and should be changed. A loose probe will usually generate a loud piercing sound. Refer to Section III if an overload condition exists.
USING THE ULTRASONIC PROCESSOR

The speed control on an automobile, can, to a certain extent, be compared to an Ultrasound Processor. The speed control is designed to maintain the vehicle’s rate of travel constant. As the terrain changes, so do the power requirements. The speed control senses these requirements, and automatically adjusts the amount of power delivered by the engine in order to compensate for these ever-changing conditions. The greater the terrain rate of incline and greater the resistance to the movement of the vehicle, the greater the amount of power that will be delivered by the engine to overcome that resistance.

The Ultrasonic Processor is designed to deliver constant amplitude. As the resistance to the movement of the probe increases, additional power will be delivered by the power supply to ensure that the excursion at the probe tip remains constant. Using a more powerful power supply will not deliver more power into the liquid. Rather, it is the resistance to the movement of the probe that determines how much power will be delivered into the sample.

The AMPLITUDE control allows the ultrasonic vibrations at the probe tip to be set to any desired level. Although the degree of cavitation required to process the sample can readily be determined by visual observation, the amount of power required cannot be predetermined. A sensing network continuously monitors the output requirements, and automatically adjusts the power to maintain the amplitude at the preselected level. The greater the resistance to the movement of the probe due to higher viscosity, or higher pressure, within the cell, the greater the amount of power that will be delivered to the probe. Setting the AMPLITUDE control fully clockwise will not cause the maximum power to be delivered to the sample. The maximum power that the Ultrasonic Processor is capable of delivering will only be delivered when the resistance to the movement of the probe is high enough to draw maximum wattage.
1. With the liquid flowing through the High Volume Flow Cell, adjust the cell pressure and Amplitude control to achieve 60% reading on the power monitor. If the liquid is discharged into an open container or a low-pressure line, the pressure can be increased by reducing the flow rate with a valve on the discharge side. Unless absolutely necessary do not operate the power supply continuously with the Amplitude control set above 90%.

2. Set the TIMER as required

3. Depress the START button.

4. Using the AMPLITUDE control, increase or decrease the amplitude as required.

5. If the converter runs hot, air-cool with DRY compressed air.

6. Process the material at different flow rates, while maintaining constant pressure.

7. Evaluate the sample.

8. If the sample is over-processed or the temperature reaches an unacceptable level, reduce the amplitude.

NOTE

When working with high viscosity material, it is recommended that (if possible) the viscosity be reduced as much as possible prior to processing.
Push buttons 1 – 4 are visible.

Push buttons 5 – 6 are not visible and are located under the front panel. These buttons can be pressed through the panel.

To set the timer:

1. Press 5 – 6 simultaneously to enter programming mode.
2. Press 4 to select the desired timing sequence.
3. Press 6 for “up/down mode”. Press 4 to select “d” (down).
4. Press 6 for “out mode”. Press 4 to select “b”.
5. Press 5 once to exit programming mode.
SECTION III – SERVICE INFORMATION

Your Ultrasonic Processor was designed to provide you with years of safe and dependable service. Nevertheless, because of component failure or improper usage, the possibility does exist that it might not perform, as it should, shut down due to an overload condition or that it will stop working all together. The most probable causes for malfunction are listed below and should be investigated.

- The unit was plugged into an electrical outlet that provides a different voltage from that required. See Electrical Requirements.
- The probe is not secured properly to the converter.
- A fuse(s) has failed. If a fuse(s) has failed, proceed as follows:
 1. Ensure that the POWER switch is set to OFF.
 2. Replace the fuse(s).
 4. Set the AMPLITUDE control to 50, the POWER switch back to ON, and depress the TEST switch. The power monitor should read below 20%. If the reading exceeds 20%, set the POWER switch to OFF, and disconnect the probe from the converter.
 5. Set the POWER switch back to ON and depress the TEST switch. If the power monitor reads below 20%, the probe has failed or is out of tune due to excessive erosion, and should be replaced, if the power monitor reads above 20%, either the converter or power supply has failed. The Ultrasonic Processor together with the High Volume Flow Cell should be returned for repair.
6. If the Ultrasonic Processor stops working due to an overload condition set the POWER switch to OFF, investigate and remedy the problem, then set the POWER switch back to ON. Reset the instrument by depressing the TEST switch.

RETURN OF EQUIPMENT

It is suggested that an Ultrasonic Processor in need of repair be sent back to the factory.

In order to receive prompt service; always contact the factory before returning any instrument. Include date of purchase, model number and serial number. For instruments not covered by the warranty, a purchase order should be forwarded to avoid unnecessary delay. Care should be exercised to provide adequate packing to insure against possible damage in shipment. The Ultrasonic Processor should be sent to the “Service Department” with all transportation charges prepaid and return of shipment indicated.

Please obtain a Return Authorization Number prior to returning the instrument.

IMPORTANT
I CERTIFY THAT THE ULTRASONIC PROCESSOR AND / OR ACCESSORIES RETURNED FOR REPAIR ARE FREE OF ANY BIOHAZARDOUS OR RADIOACTIVE MATERIAL AND ARE SAFE FOR HANDLING.
DO NOT RETURN ANY EQUIPMENT UNLESS SUCH CERTIFICATION CAN BE MADE.